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M A T H E M A T I C A L  M O D E L I N G  OF SALT T R A N S P O R T  

BY C O U P L E D  S U B S U R F A C E  A N D  SURFACE W A T E R  FLOWS 

A. A. Kashevarov UDC 532.546 

A mathematical model is examined to describe the transport of salts by coupled flows of 
surface, soil, and subsoil waters for large-scale objects characterized by complex hydrogeologic 
conditions. Computational algorithms and computer programs developed for realization of the 
model are based on the use of finite-difference methods to distinguish between different physical 
processes and modeling regions. Results are presented from examples of calculations to illustrate 
characteristic features of the problem of mass transfer by coupled flows. 

In t roduc t i on .  In mathematical modeling of regional water flow and water quality, it is necessary to 
consider the interaction of different components of a given flow and mass transfer between them. The water 
flow processes that are part of the hydrologic cycle differ from each other in their physical nature, and each of 
them has their own region of localization. The following factors make the main contributions to the formation 
of a water flow [1]: flow in streams and basins; pressurized and unpressurized filtration of subsoil waters in 
connected aquifers , the migration of moisture in the zone of incomplete saturation (aeration zone), overland 
runoff of rainwater, and the formation and thawing of the snow cover. 

Reliable mathematical models have been developed to describe individual processes in the hydrologic 
cycle and have long been used to solve practical problems [2, 3]. In the middle of the 1970s, researchers began 
to actively develop models that describe the coupling of fluvial and filtration flows [4--6]. At the beginning 
of the 1980s, results began to appear from mathematical modeling of water exchange processes on land with 
allowance for all relevant factors [1, 7-9]. Such models can be used to predict the regime for large river basins, 
irrigation and drainage systems, etc. However, the solution of environmental problems requires an evaluation 
of the quality of subsurface and surface waters. 

In this investigation, we propose a mathematical model to describe the transport of salts by coupled 
flows of surface water (streams and basins), soil water (the aeration zone), and subsoil water for large-scale 
objects characterized by complex hydrogeologic conditions. 

Given the current state of computer technology, it is not yet possible to solve the given problem as 
a whole on the basis of a single three-dimensional hydrodynamic model. We thus propose to use a modular 
approach to construct mass-transfer models. The approach involves the linking of hydraulic submodels of 
varying degrees of complexity which correspond to different physical processes [1]. The interaction between 
the components of a given water flow are modeled by source functions that enter into differential equations, 
internal boundary conditions, and parameters of the model determined during the solution of the problem. 
The overall model of mass transfer includes submodels which describe water exchange and water quality. It 
is assumed that salt transport has no effect on the flow of the aqueous phase. 

Mode l ing  of  C oup l ed  Flows of Subsurface and  Surface Waters .  We are examining a bounded 
I 

multiply connected modeling region l~ C R 2. Inside fl we make l slits Hi (H = ~ Hi) corresponding to 
i=l 

streams. The closed contours F 1 = 0Grj coincide with the fixed boundaries of basins. The internal boundaries 
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Fig. 1. Modeling region with subregions ai:  
Hi are the streams, points • and | denote 
the wells pumping water from the top and 
bot tom aquifers. 

of Hi and F 1 have a point of intersection where the ith stream flows into the j t h  basin. Figure 1 presents an 
example of a region with three streams and one basin. 

The flow of subsoil water in pressurized and unpressurized aquifers is modeled on the basis of the 
equations that  describe plane filtration [2] 

pH~ = d i v ( M V g )  + r(H1 - H) + f ,  (z, y) E ~,  (1) 

where H(x ,y ,  t) is the level (head) of the subsoil waters, p and M are coefficients that  characterize the 
specific (elastic) yield of water and water flow, f ( x ,  y, t) is a source function tha t  accounts for the operation 
of wells and infiltration, and r(H1 - H) is the flow into the adjacent aquifer with the head / / 1 .  The condition 
M = ky(H - Hb) is satisfied for an unpressurized aquifer, where k l is the filtration coefficient and Hb(x, y) 
are the upper and lower boundaries of the aquifer. 

On the external boundary  of the modeling region (G = 0f~), we assign boundary conditions of the first 
and second type 

MH,~ [G1 = ~a, H la2 = ~2, G = 0f~ = G1 U G2. (2) 

The flow in the drainage Hi is described by a system of one-dimensional equations for diffusion waves, 
this system being an approximation of the St. Venant equations 

w, = (~]zs]l/2sgn(zs))s - [MHn]lli + f] ,  

= ~  lz, l'/'sgn(z,)lp =,X,p, 

( x, y) E Hi; (3) 

zlQ, = u, (4) 

where z(s, t) is the  water level in the  stream, w(z, s) is the cross-sectional area (B -- wz is the width), s is the 
distance along the stream, ~(z ,  s) = Ti-lwR 2/3 is the discharge modulus,  r/is the  roughness factor (r/-1 = 7), 
R is the hydrodynamic radius of the flow, f l  is a source function, [MH,]II = (MHnhi  + + MHn[rl_) is the 

total filtration inflow of subsoil water from the right II + and left l-I- banks of the  stream, and H ,  = OH/On is 
the outer normal derivative. At the points N, P,  and Q Cat the beginning and end of the streams), we assign 
the water level and discharge or we specify that  the water levels in the stream and the  basin coincide where 
the stream enters the basin. At a confluence of several streams, the levels of those streams coincide and the 
inflow equals the  outflow. 

We assume that  the surface waters at the internal boundaries of Hi are at the same level as the subsoil 
waters in the first (uppermost)  aquifer on the left and right banks: 

The levels of the subsoil waters on the left and right banks can be assumed to coincide for narrow streams. 
Then condition (5) changes to the form q / -  [MH,,]n = 2a(z - H)[ n, H n+ = H rP" 
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The change in the water level u(t) in basins with the boundary F = 0f/r  are determined by balance 
relations. Two situations are possible in modeling the interaction of a basin and an upper-lying aquifer. In 
the first case, within the region ~[. corresponding to the inside part of the basin, the filtration problem is not 
solved, and the boundary of the basin is the internal boundary of the filtration region. In the second case, the 
basin is the infiltration region f for the seepage flow calculated inside ~r .  For each type of basin, we assign 
a balance relation that  determines the water level in it, in addition to specifying the compatibility condition 
for the filtration problem: 

Au, = - / M H ,  ds + qr + f2, MH,~[r = a(u  - H)[r, ( x , y )  E F; (6) 
r 

Aut = - / a (u  - H)dxdy  + qr + f2, f = a(u - g ) ,  (x, y) e a t .  (6') 
ill. 

Here A = rues fir  is the area of the basin, qr is the flow of water into the basin from the streams that enter it, 
f2 is a source function that  accounts for evaporation and sedimentation, and f is the source function in (1). 

Lower-lying aquifers are not hydraulically coupled with surface streams, and the discharge and head 
of these aquifers are assumed to be continuous at the internal boundaries of H. 

Vertical migration of soil moisture in the aeration zone is calculated only on the detailed section fl~ C ~/ 
and is described by the Pdchards one-dimensional equation [10] 

0t = ( g ( r  n + 1))~ + f3, H < 17 < He, (z, y) e fl~, (7) 

where 0(r is the volumetric moisture content, r is the pressure of the soil moisture, K(T/, 0) is the hydraulic 
conductivity, and 17 is the vertical coordinate directed upward. The relations 0(0) and K(r  are assumed 
to exist. For example, it is possible to make use of the empirical formulas 0 = 0,/(1 + ( - C / w )  r and K = 
k , ( O  - O r ) S / ( O ,  - 0, .)  ~ for r < 0 and 0 = 0,, = m and g = k,  = k f  for ~b t> 0. 

The absorption of moisture by the root system of the vegetation is accounted for by the source function 
f s  = - E ( t ) ( O *  - O o ) / ( z k ( O k  -- 0o)) and T/e (Hp - zk, Hp); fs  = 0 and 1/< Hp - zk; O* = 0 and Oo < 0 < Ok; 
0* = 0k and 0/> 0k; 0" = 00 and 0 <~ 00. 

In this case, on the detailed section Eq. (1) is replaced by the equation 

d iv(MVH) = -K(r  + 1)[n=s, (x,  y) e ~,~. 

The following boundary conditions are assigned at ground level ~/= Hp and at the free surface of the 
subsoil waters r / =  H: 

K(~b. + 1)I.=H , = Ro(=,y,t), r --o. is) 

To close the water problem, we need to assign the initial data 

M o d e l i n g  t h e  T r a n s p o r t  of  C o n t a m i n a t i n g  I m p u r i t i e s .  Models that  describe salt transport by 
subsurface and surface waters are based on the equations of convective diffusion and account for the exchange 
of salt between components of the water flow. When salt transport in unpressurized subsoil waters is being 
modeled, it is necessary to also consider the accumulation of salts in the aeration zone. 

Salt transport by a filtration flow in a pressurized aquifer is described by a two-dimensional equation 
[11] 

(tndC)~ = div(DVC - vC) - r  N )  + fC~ ,  

H-H  
rh = m + / ~  d ' 

with the boundary conditions 

V * ( D y e  - vC)n[a I = - nC;10n, 

d = (Hp - Hb), v = - M V H  

QI  - [(DVC - vC)n]n = -[vnC*]lI.  

(lO) 

(11) 
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I The I I In condition Q = q C* is satisfied for narrow streams. 
For a nonconservatlve impurity, the process of salt deposition on the skeleton of the soil is determined 

by the ordinary differential equation 

(dN)t = ~ = 7(C, N)(C - C.). (12) 

Here C and N are the concentrations of salt in solution and in the solid phase, H v and Hb are the upper and 
lower boundaries of the aquifer, C. = const, and D = Do + Alvl is the diffusion coefficient. 

The value of C* is determined by the direction of the filtration flow: 

Cg, q>/0;  C*.II = C1, qI>/O, C.f, f>~O. 

Here C~ and C I are assigned functions and q = - v n  = -vn.  
Equations of the type (10) and (12) are written for each aquifer, and a separate value of concentration is 

determined in each aquifer. For nonpressurized flow of subsoil waters, the capacity of an aquifer is determined 
by the relation d = (H - Hb). In a number of cases, the concentration changes only slightly in lower-lying 
aquifers and can be considered constant. 

The transport of impurities by fluvial waters is modeled by a system of one-dimensional equations [12] 

O(wC1)= O /  OCa ) , -~s~Da-~s-v lC1-q iC*- t - f lC1 ,  (x,y) eHi, (13) 

where 6'1 is the concentration of salts in a stream and D1 = )q Iv, lR. At the ends of streams, we assign 
boundary conditions of the form 

( D10C1 
w I o, = 

Salt concentration is averaged over the thickness d of an aquifer and the cross section of streams w, while for 
basins it is determined by the balance relations 

(~(u - ua)C2), = f v,,C~ ds + Q, + Y2C~, Qr = qrC~ for (6), 
(15) 

1, 

- ua)c2) ,  = - [ - H ) C ;  as + + I2C  for (6'). 
fir 

Here the values of C~ and C~ also depend on the flow direction at the corresponding points of the modeling 
region; ud is the lower boundary of the basin. 

On the detailed section fla, the concentration of a conservative impurity 6'3 in the aeration zone is 
found from the differential equation 

0(0C3) = O---{n3OCs - v3C3), H < ~ < H,, (z,y) e a,, vs = -K(r + 1). (16) 
Ot 0,7 \ 0,7 

Examining the salt balance in the "vertical column" from the aquifer to ground level, we obtain the following 
equation to describe salt transport by the filtration flow in the subregion f/d 

Up 
0 

" - ( __ I (0C3) d,7 + m ( H -  Hb)C) = d i v ( D V C -  v C ) +  fC'} + Ro6'L 
H 

Having differentiated the first term with respect to time and taking (16) into account, we have 

= div(DVC - vC) + fC~ + (-v3C~ + rnHtC3)[~= H. (10') m((g Hb)C),  l 

In the given case, Eq. (10') is used instead of Eq. (10), 
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For Eq. (16), we assign the following boundary conditions at ground level and at the free surface of 
the subsoil waters: 

=Roq, 

Here, as before, the parameter C~ depends on the flow direction. 
We need to specify the following initial data for the salt problem: 

C = Co, N = No, C~ = C, ~ O5 = C~, Cs = C ~ t = 0. (18) 

C o m p u t a t i o n a l  A l go r i t hm.  The numerical realization of the model is based on its decomposition 
with respect to physical processes and modeling regions [1], which makes it possible to efficiently resolve the 
problem of dealing with large space-time scales. The salt transport process does not affect the solution of the 
water problem. Thus, the problem of the quality of the subsurface and surface waters (10)-(18) is separated 
from the other problems and is solved in the last stage of the investigation, after determination of the velocity 
field for all of the components of the water flow from the solution of the water exchange problem (1)-(9). 

The coupling problem has the following features: 
- -  the type of boundary conditions used for the salt transport problem depends on the direction of the 

velocity vector of the water flow, which changes over time; 
- -  the equations that describe the flow of the fluvial waters are strongly nonlinear and become degenerate 

when the stream level coincides with the lower boundary of an aquifer and when sections with a horizontal 
level appear; 

- -  flows of basin and surface waters are modeled in regions of different dimensions. 
The processes accounted for in the model have different characteristic rates, which requires a different 

degree of detailing of the calculations for each process. For example, the numerical algorithm must permit 
calculation of the passage of short pulses of an impurity along streams and account for their effect on the salt 
regime of the subsoil waters. These requirements mean that different time steps must be used in the problems 
for the fluvial and filtration flows. 

We used implicit finite-difference schemes [1, 13] to solve the filtration problem (1) and (2). The 
algorithm for the calculations is based on the iterative method of variable directions. The following 
representation was used for the kth time layer to approximate the filtration component of the fluvial flow: 

tk 

q~ =_ [MH~l i i  : a ( s  k + Ht-1))[ii, ~/~=~-1 / z d t ,  

f : t k _  1 

where rf = (tt - t t -1) is the time step in the filtration problem. 
To solve the problem of fluvial flow (3) and (4), we used a modification of the finite-difference scheme 

proposed in [14]: 

m m 1 - 4 " - '  = Q,,i-1 + + / / .  + = 
rp As 

. OQ,,j , ( 4"  OQ ,j[ , ( z 7  Qi,j = Qi,j  4" ~ z - -- z~ -6) Jr "~ 'z j  Iz - -- z7-6) '  

0z, = 0.st,  2(17  k :  

Here rp is the time step for the fluvial flow problem, which is smaller that the step r l  for the filtration 
problem r l / r  p = K >1 I >1 1, m = n + I l K ,  q'~ = 2a(z  m - ~I) is the filtration inflow, 6j = 1 and 6i = -1,  

[-I = ( I / K ) H  n+l + (1 - I / K ) H  n, and As is the step for the space variable, reckoned along the channel of the 
stream. Introduction of the regularizing parameter r > 0 makes it possible to calculate the flow in streams in 
the presence of isolated points with a horizontal water level. 
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Implicit conservative finite-difference methods were also used to solve the salt problem in the subsoil 
waters. A local salt balance referred to the corresponding elementary rectangle of the grid is assigned to each 
node. The convective component was approximated by using a countercurrent scheme, and the direction of 
flow of the aqueous phase was considered in determining the contribution of exchange processes to the salt 
balance. The rate of transfer of salts Qij from the ith component of the water flow to the j t h  component of 
the same flow is determined by the relation Qij = qiiC~j, where Ci~ = {Ci, qij > O; e l ,  all <~ 0} (qij is the 
rate of flow of water from the ith component to the j t h  component). 

E x a m p l e s  of  C a l c u l a t i o n s .  We shall present numerical calculations for two problems concerning 
the transport of a contaminating impurity by interacting fluvial and filtration flows. The filtration region 
( f / =  fll U f~2) for both problems (Fig. 1) is contained within a rectangle {0 < x < 12,000 m, 0 < y < 17,000 
m}. The drainage consists of three streams and a basin, all of which are hydraulically coupled with an upper- 
lying aquifer. The detailed section ft~t is taken into account only in the second problem. 

In the first problem, filtration of subsoil waters occurs in two hydraulically coupled pressurized aquifers. 
The filtration parameters in regions f~l and fl2 were assigned the following values: 

for the upper-level aquifer, MI = 600 m2/day, ml = 0.22, and #1 = 0.001, M2 = 800 m2/day, m 2  = 0.17, 
and #2 = 0.001, and dl  = d2 = 30 m; 

for the lower-level aquifer, MI = 650 m2/day and/~1 = 0.05, M2 = 400 m2/day and/~2 = 0.04. 
The coefficient r in the formula for flow between the aquifers is equal to 0.0001 m/day. 

The parameters characterizing the stream channels have the following values: B1 = 3 m, trl = 
2.2 m/day, and 71 = 1.5- 106, B2 = 2 m, ctl = 2.0 m/day, and 72 = 1.6.106, and B3 = 4 m, Ctl = 2.6 m/day, 
and 3'3 = 1.8- 106. 

The parameters of the basin are as follows: A = 9.0.105 m 2, tr = 0.15 m/day, and the lower boundary 
ud = 95 m. The water level was determined from the balance relation (6~), where qr accounts for the flow 
of water into the basin via the two streams 111 and 112, and the flow of water out of the basin via the third 
stream Ha. 

The boundary conditions adopted for the water and salt problems at the boundary of the filtration 
region G axe constant over time, while the conditions at the inlet (s = 0) of streams HI and 112 change 
over a period of 365 days in accordance with the following law: z = 101 + •(100 - t) and t ~< 100 days, 
z = zi - 6i(200 - t) and 100 < t ~< 200 days, z = 101, 200 < t < 365 days, and s = 0, 61 = 0.03 m/day  and 
zl = 104 m, 62 = 0.025 m / d a y  and z2 = 103.5 m. 

A solution with a concentration of 10 mg/li ter entered streams 111 and 112 at the beginning of the 
modeled period 0 ~< t < 200 days. For the remainder of the period, 200 ~ t < 365 days, the concentration of 
the solution was zero. A constant level z = 99.5 m was assigned at the outlet of the third stream. 

The initial distribution of subsoil waters and fluvial waters corresponds to a periodic steady-state 
regime (at the beginning of the period) with the assumption that  no wells are in operation. The initial value 
of concentration throughout the region is zero. In the second aquifer, we assumed that the concentration was 
zero for the entire t ime of calculation. The parameters Do = i0, A = 2.5, and A1 = 0 determine the coefficient 
of diffusion of salts in subsoil waters and streams. 

The yield of the wells Q c  that  pump water from the lower-lying (second) aquifer is 3000 m3/day. The 
yield of the wells which pump water from the upper-lying aquifer is 2000 m3/day. 

The problem was solved on a difference grid with 51 • 47 nodes. The steps of the space variables were 
changed within the following ranges: Az = 200-300 m and Ay = 300-500 m. The time step is r f  = 10 days 
in the filtration problem and vr = rf /100 for the drainage. 

Figures 2 and 3 show the results of calculation of the filtration flow and salt transport in subsoil 
waters. The regime of the subsoil waters becomes nearly periodic over 10 theoretical years, and a band of salt 
contamination is formed in these waters and expands slowly over time. Figure 2 shows the contours of the 
water tables in the upper and lower aquifers (T = 7300 days). Figure 3 shows isolines of salt concentration in 
the upper aquifer for the theoretical time T = 10,950 days. 

Salts enter subsoil waters only as a result of filtration of the solution from streams and basins. The 
contamination is then slowly carried in the direction of pumping wells by filtration flow within the given 
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Fig. 2. Water-table contours in the upper (a) and lower (b) aquifers. 

Fig. 3. Isolines of salt concentrations in the upper aquifer. 

region. When salts stop entering streams H1 and rI2, their concentration in the streams decreases to zero over 
a period of several days. Despite this, salt concentration remains nontriviM in the basin and the third stream 
for an entire year and increases to nearly 10 mg/liter at the beginning of the period. Concentration decreases 
after salt stops entering the streams. The lowest salt concentration in the basin is reached at the end of the 
period. Values of 0.373, 0.409, and 0.426 mg/liter were obtained for salt concentration in the basin over the 
periods 3650, 7300, and 10,950 days, respectively. The accumulation of salts is due to the storage properties 
of the basin and depends on the rate at which the water in the basin is replenished. 

In the second problem, filtration of the subsoil waters occurs in one unpressurized aquifer with the 
parameters ml  = 0.2, k} - 8 m/day,  ms = 0.15, and k~ - 10 m/day, where mi and k~ are the porosity and 
the filtration coefficient in the region fZi (i - 1, 2). The aquifer and the surface of the ground are horizontal 
(Hb = 75 m and Hp = 110 m). On the detailed section fld, we use Eq. (7) to calculate the migration of 
moisture in the aeration zone (see Fig. 1). The water flow regime is steady with constant boundary conditions 
for the fluvial and filtration flows and constant discharges in wells with a yield Q c  -- 2000 mS/day. A constant 
level z I -- 101 m was assigned at the inlet of streams H1 and II2, while the remaining parameters of the 
streams coincide with the values in the first problem. 

For the aeration zone, the flow rate was assigned on the ground surface (R0 = 0.002) and the absorption 
of moisture by plants' root was taken into account (E -" 0.002). The soil parameters (01 = 0.02, 02 -- 0.2, 
w = 5 m, 5 = ~ = 3, and k / =  8 m/day)  and root-system parameters (Ok = 0.2, 0z = 0.05, and zk = 1 m) 
were given. On the detailed section, the flow from the aeration zone is infiltration supply to subsoil waters, 
and it is determined in solving the stationary problem of water exchange. A solution with a concentration of 
I0 mg/liter is continuously supplied from the aeration zone, and there are no other sources of concentration 
in the modeling zone. 

A contamination spot that  expands over time is formed in the subsoil waters in and near the subregion 
l~d. After 5 years, the contamination reaches streams H1 and [I2. Since these streams drain subsoil waters, the 
salts enter the streams and, moving through the drainage, also enter the basin and the s t ream/Is .  Conversely, 
water filters into the soil from stream H3, which leads to contamination of the subsoil waters near that stream. 
The concentration of salts in the basin slowly increases over time, with the values 0.081, 0.205, and 0.313 
mg/liter that we calculated corresponding to times of 3650, 7300, and 10,950 days, respectively. Although 
streams HI and II2 drain subsoil waters, they cannot prevent spreading of the contamination from one bank 
to the other by the filtration flow. Figure 4 shows results of calculation of the filtration flow and salt transport 
in the subsoil waters (t = 10,950). 

Conc lus ion .  The examples examined above illustrate several characteristic features of salt transport by 
coupled flows. Due to the low rate of flow of subsoil waters, salts accumulate in them and local contamination 
spots are formed. The filtration flow from the drainage in the first example and infiltration from the aeration 
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Fig. 4. Water-table contours (a) and isolines of salt concentration (b) in subsoil waters. 

zone in the second example are the main factors that determine the subsoil-water supply region. In such cases, 
even the entry of contaminants into the filtration flow at a low rate will lead to a significant increase in their 
concentration near that region. The salt solutions are carried at a high rate by streams and in a short period 
of time salinate subsoil waters located large distances from the original source of contamination. 

The above model of water exchange can be used to construct hydrologic models of any degree of 
complexity for ongoing practical use. The model can also be used to make real-time predictions of water 
and salt conditions in subsoil and surface waters within limited areas. Such predictions can then be used to 
optimize the regime of operation of hydrological facilities (irrigation and drainage systems, intakes, canals, 
reservoirs, etc.), evaluate the environmental losses from their operation, and plan measures to compensate for 
the adverse effects on the environment. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01568). 
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